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Abstract. The production of D∗±(2010) mesons in deep inelastic scattering has been measured in the ZEUS
detector at HERA using an integrated luminosity of 37 pb−1. The decay channels D∗+ → D0π+ (+ c.c.),
with D0 → K−π+ or D0 → K−π−π+π+, have been used to identify the D mesons. The e+p cross section
for inclusive D∗± production with 1 < Q2 < 600GeV2 and 0.02 < y < 0.7 is 8.31±0.31(stat.)+0.30

−0.50(syst.) nb
in the kinematic region 1.5 < pT (D∗±) < 15GeV and |η(D∗±)| < 1.5. Differential cross sections are
consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation
models which take into account the interaction of the charm quark with the proton remnant. The observed
cross section is extrapolated to the full kinematic region in pT (D∗±) and η(D∗±) in order to determine
the charm contribution, F cc̄

2 (x, Q2), to the proton structure function. The ratio F cc̄
2 /F2 rises from '10%

at Q2 ' 1.8GeV2 to '30% at Q2 '130GeV2 for x values in the range 10−4 to 10−3.
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1 Introduction

The first HERA measurements of the charm contribution,
F cc̄

2 , to the proton structure function F2 were reported
by the H1 and ZEUS collaborations from the analyses of
their 1994 deep inelastic scattering (DIS) data sets [1,2].
These early results, which were statistically limited, re-
vealed a steep rise of F cc̄

2 as Bjorken-x decreases. At the
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Fig. 1. Diagram of the boson-gluon-fusion process in e+p col-
lisions

lowest accessible x values, it was found that around 25%
of DIS events contained open charm, in contrast to the
EMC fixed target measurements [3] in the high-x region,
where the charm contribution is small. Given the large
charm content, the correct theoretical treatment of charm
for F2 analyses in the HERA regime has become essential.
More detailed measurements of charm production will aid
such analyses.

The early results [1,2] suggested that the production
dynamics of charmed mesons in ep collisions are domi-
nated by the boson-gluon-fusion (BGF) mechanism shown
in Fig. 1. In this case, the reactions e+p → e+D∗±X are
sensitive to the gluon distribution in the proton [4]. The
measurement of charm production can also provide tests
of perturbative QCD (pQCD), in particular, tests of the
hard scattering factorization theorem, which states that
the same, universal, gluon distribution should contribute
to both F2 and F cc̄

2 . In addition, the presence of two large
scales, namely, the virtuality of the exchanged boson (Q2)
and the square of the charm-quark mass (m2

c), provides a
testing ground for resummation techniques.

This paper reports a measurement of D∗±(2010) pro-
duction using the 1996 and 1997 data sets collected with
the ZEUS detector, corresponding to an integrated lumi-
nosity of 37 pb−1. During this period, HERA collidedEe =
27.5 GeV positrons with Ep = 820 GeV protons, yielding
a center-of-mass energy,

√
s, of 300 GeV. This larger data

sample, together with some improvements to the ZEUS
detector, allows an extension of the kinematic range to
both larger and smaller Q2. The D∗± production is inves-
tigated in the decay channel D∗+(2010) → D0(1864)π+

s

(+ c.c.), where π+
s refers to a slow π+ [5], followed by

the D0 decay channels D0 → K−π+ (+ c.c.) or D0 →
K−π+π−π+ (+ c.c.). These two final states will be re-
ferred to as the K2π and K4π channels, respectively.

ucation and Science, Research and Technology (BMBF)
m supported by the Fund for Fundamental Research of Russian
Ministry for Science and Education and by the German Federal
Ministry for Education and Science, Research and Technology
(BMBF)
n supported by the Spanish Ministry of Education and Science
through funds provided by CICYT
o supported by the Particle Physics and Astronomy Research
Council
p supported by the US Department of Energy
q supported by the US National Science Foundation
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Following a brief discussion of three pQCD calculations
forD∗± production in DIS, a description of the experiment
and details of the data analysis are provided. Next, the
cross sections for D∗± are presented and are compared
to the QCD predictions. A possible cause of the observed
discrepancies between the data and the QCD results is
discussed. Finally, the D∗± results are used to obtain the
charm contribution to F2.

2 Charm quark production models

General agreement was found between the earlier HERA
D∗± data and the results from a Monte Carlo program
HVQDIS [6] for the production of heavy quarks and their
subsequent fragmentation to hadrons. This program is
based on next-to-leading-order (NLO) calculations [7] of
order α2

s in the coefficient functions in the so-called fixed-
flavor-number scheme (FFNS). In this scheme, the num-
ber of active quark flavors is fixed, independent of Q2.
Only light quarks (u, d, s) are included in the initial-
state proton and charm quarks are produced exclusively
by BGF with NLO processes [8]. The presence of the two
large scales, Q2 and m2

c , can spoil the convergence of the
perturbative series because the neglected terms of orders
higher than α2

s contain log(Q2/m2
c) factors that can be-

come large. Therefore the results of HVQDIS are expected
to be most accurate at Q2 ≈ m2

c and to become less reli-
able when Q2 � m2

c .
In this high Q2 region, the c quark can be treated

as massless, as implemented in the zero-mass, variable-
flavor-number scheme (ZM-VFNS). In this scheme, the
resummation of large logarithms of Q2/m2

c [9,10] results
in a charm density which is added as a fourth flavor and
which is then evolved in the same way as the light quark
densities. At intermediateQ2 values, the two schemes need
to be merged. One way in which this is done is described
by ACOT [9] and by Collins [11]. An alternative matching
method has been proposed by MRST [12].

A third method for modelling D∗± production has re-
cently been suggested by BKL [13]. This tree-level pQCD
calculation, applicable for pT ≥ mc, considers the ha-
dronization of the (cq̄)-state into a D∗, in contrast to
hadronizing an isolated c-quark. The D∗ is created from
both color singlet and color octet configurations of the
light and heavy quarks. Results from e+e− annihilation
imply that the octet contribution is small. However, the
singlet contribution alone underestimates [13] the ZEUS
data on the photoproduction of charm [14]. This calcula-
tion has been extended to DIS charm production and is
compared to the D∗± data reported here.

3 Experimental setup

ZEUS is a multipurpose detector which has been described
in detail elsewhere [15]. The key component for this anal-
ysis is the central tracking detector (CTD) which operates
in a magnetic field of 1.43 T provided by a thin supercon-

ducting solenoid. The CTD [16] is a drift chamber con-
sisting of 72 cylindrical layers, arranged in 9 superlayers
covering the polar angle1 region 15◦ < θ < 164◦. The
transverse momentum resolution for full-length tracks is
σ(pT)/pT = 0.0058 pT

⊕
0.0065

⊕
0.0014/pT (pT in GeV).

The CTD was also used to establish an interaction vertex
for each event.

The uranium-scintillator sampling calorimeter (CAL)
surrounds the solenoid. The CAL is hermetic and consists
of 5918 cells, each read out by two photomultiplier tubes.
The CAL contains three parts, the forward (FCAL), bar-
rel (BCAL) and rear (RCAL), with longitudinal segmen-
tation into electromagnetic and hadronic sections. The
energy resolutions, as measured in test beams, are σ/E
= 0.18/

√
E(GeV) and 0.35/

√
E(GeV) for electrons and

hadrons, respectively [17].
The position of positrons scattered close to the posi-

tron beam direction is determined by a scintillator strip
detector (SRTD) [18]. The luminosity was measured from
the rate of the bremsstrahlung process, e+p → e+γp,
where the photon is measured by a lead/scintillator calo-
rimeter [19] located at Z = − 107 m in the HERA tunnel.

4 Kinematics and reconstruction of variables

The reaction e+(k)+ p(P ) → e+(k′)+X at fixed squared
center-of-mass energy, s = (k+P )2, is described in terms
of Q2 = −q2 = −(k − k′)2 and Bjorken-x = Q2/(2P · q).
The fractional energy transferred to the proton in its rest
frame is y = Q2/(sx). The virtual photon (γ∗)-proton
center-of-mass energy W , given by W 2 = (q+P )2, is also
used, see Fig. 1.

In neutral current (NC) e+p DIS, both the final-state
positron, with energy E′

e and angle θ′
e, and the hadronic

system (with a characteristic angle γh, which, in the sim-
ple quark-parton model, is the polar angle of the struck
quark) can be measured. The scattered positron was iden-
tified using an algorithm based on a neural network [20].
CAL cells were combined to form clusters and combina-
tions of these clusters and CTD tracks were used to re-
construct energy-flow objects (EFO’s) [21,22]. For per-
fect detector resolution and acceptance, the quantity δ ≡
Σi(Ei − pz,i) is equal to 2Ee (55 GeV). Here, Ei and pz,i

are the energy and longitudinal component of the mo-
mentum assigned to the i-th EFO. The sum runs over all
EFO’s including those assigned to the scattered positron.

In the K2π analysis, Q2 was reconstructed from the
scattered positron (Q2

e) with the electron method [23] and
y with the so-called Σ method [24]

yΣ =
δhad

δ
, (1)

where δhad is calculated in the same way as δ but excluding
the EFO’s assigned to the scattered positron. Bjorken-x

1 The ZEUS coordinate system is defined as right-handed
with the Z axis pointing in the forward (proton beam) direc-
tion and the X axis horizontal pointing towards the center of
HERA. The origin is at the nominal ep interaction point. The
polar angle θ is defined with respect to the positive Z direction.
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(xeΣ) and W (WeΣ) are then defined by a combination of
Q2

e and yΣ (eΣ method).
The fractional momentum of the D∗± in the γ∗p sys-

tem is defined as

x(D∗) =
2|~p ∗(D∗)|

W
, (2)

where ~p ∗(D∗) is the D∗± momentum in the γ∗p center-of-
mass frame. For the boost to the γ∗p system, the virtual-
photon vector was reconstructed using the double-angle
(DA) estimator [23] of the scattered positron energy, E′

DA.
In this method, only the angles θ′

e and γh are used [25].
E′

DA is less sensitive to radiative effects at the leptonic
vertex than the scattered e+ energy determined using the
electron method.

For the K4π analysis, Q2, x and W were determined
using the DA estimators (Q2

DA, xDA and WDA).

5 Monte Carlo simulation

A GEANT 3.13-based [26] Monte Carlo (MC) simulation
program which incorporates the best current knowledge
of the ZEUS detector and trigger was used to correct the
data for detector and acceptance effects. The event gen-
erator used for the simulation of the QED radiation from
the leptonic vertex was RAPGAP [27] interfaced to HER-
ACLES 4.1 [28]. The charm quarks were produced in the
BGF process calculated at leading order (LO). The charm
mass was set to 1.5 GeV. The GRV94HO [29] parton dis-
tribution functions (pdf’s) were used for the proton. Frag-
mentation was carried out using the Lund model [30], as
implemented in JETSET 7.4 [31], with the full parton
shower option. The fraction of the original c-quark mo-
mentum which is carried by the D∗± is determined from
the ‘SLAC’ fragmentation function, which is equivalent
to the Peterson model [32], with the fragmentation pa-
rameter ε set to 0.035 [33]. The HERWIG 5.9 [34] event
generator was also used, with the same pdf’s and c-quark
mass as used in RAPGAP, to investigate the effects of
fragmentation.

Generated events with at least one D∗+ → D0π+
s →

(K−π+ or K−π+π−π+)π+
s (or c.c.) were selected. These

events were then processed through the detector and trig-
ger simulation and through the same reconstruction pro-
gram as was used for the data.

6 Event selection

6.1 Trigger

Events were selected online with a three-level trigger [15].
At the first level (FLT), inclusive DIS events are triggered
by the presence of an isolated electromagnetic cluster in
the RCAL or any energy deposition in excess of 3 GeV in
any electromagnetic section of the CAL [35]. During high-
luminosity periods, when the rate was high, a coincidence
with an FLT track was also required. Tracks at the FLT

are defined as a series of CTD hits pointing to the nom-
inal interaction point. The efficiency of this trigger, with
respect to the calorimeter-only trigger, was greater than
99.5% and in good agreement with the MC simulation.

At the second level, algorithms are applied to reduce
the non-e+p background. The full event information is
available at the third level trigger (TLT). At this level,
events are accepted as DIS candidates if a high-energy
scattered positron candidate is found within the CAL (‘in-
clusive DIS trigger’). Because of the high rate of low-Q2

events, this trigger was turned off in the region around the
RCAL beampipe during high-luminosity operation. For
the K2π decay channel, a D∗-finder (based on computing
the Kππ mass using tracking information and selecting
loosely around the D∗± mass) was available in the TLT.
Events at low Q2 were then kept by requiring a coinci-
dence of an identified scattered positron anywhere in the
CAL and a tagged D∗± candidate. This will be referred
to as the ‘D∗ trigger’.

Using data selected from periods when both triggers
were in use, the relative efficiency of the D∗ trigger with
respect to the inclusive DIS trigger is found to be about
80% and independent of Q2, x, pT (D∗) and η(D∗) within
the measured kinematic regions. The MC simulations re-
produce this efficiency to an accuracy better than the sta-
tistical accuracy of the data (≈ 2%).

6.2 Offline selection

The DIS event selection was similar to that described in
an earlier publication [36]; namely, the selection required:

– a positron, as identified by a neural network algorithm,
with a corrected energy above 10 GeV;

– the impact point of the scattered positron on the RCAL
was required to lie outside the region 26×14 cm2 cen-
tered on the RCAL beamline;

– 40 < δ < 65 GeV; and
– a Z-vertex position |Zvtx| < 50 cm.

The DIS events were restricted to the kinematic region

– 1 < Q2 < 600 GeV2 and 0.02 < y < 0.7.

D∗± candidates were reconstructed from CTD tracks
which were assigned to the reconstructed event vertex.
Only tracks with at least one hit in the third superlayer
of the CTD were considered. This corresponds to an im-
plicit requirement that pT > 0.075 GeV. Tracks were also
required to have |η| < 1.75, where the pseudorapidity is
defined as η = − ln(tan θ

2 ). The selected tracks were in the
region where the CTD performance is well understood. For
these tracks the reconstruction efficiency is above 95%.

D∗± production was measured in the decay channel
D∗+ → D0π+

s (+ c.c.), which has a branching ratio of
0.683 ± 0.014 [37], followed by theD0 decaysD0 → K−π+

(+ c.c.) or D0 → K−π+π−π+ (+ c.c.). The branching
ratio for D0 to Kπ (K3π) is 0.0385 ± 0.0009 (0.076 ±
0.004) [37]. The remaining selection criteria were different
for the two final states and are discussed separately.
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6.3 Selection for the K2π final state

Pairs of oppositely-charged tracks were first combined to
form a D0 candidate. Since no particle identification was
performed, the tracks were alternatively assigned the mas-
ses of a charged kaon and a charged pion. An additional
slow track, with charge opposite to that of the kaon track
and assigned the pion mass (πs), was combined with the
D0 candidate to form a D∗± candidate.

The combinatorial background for theK2π decay chan-
nel was further reduced by requiring

– that the transverse momenta of the K and the π were
greater than 0.4 GeV, and that of the πs was greater
than 0.12 GeV.

In addition, the momentum ratio requirement

– p(D0)/p(πs) > 8.0

was imposed. This requirement was used in the D∗ trigger
to reduce the rate of candidate events with large ∆M ≡
(MKππs −MKπ), far from the signal region.

The D∗± kinematic region of the present analysis was
defined as

– 1.5 < pT (D∗) < 15 GeV and |η(D∗)| < 1.5.

Finally, the signal regions for the mass of the D0 candi-
date, M(D0), and ∆M were

– 1.80 < M(D0) < 1.92 GeV, and
– 143 < ∆M < 148 MeV.

6.4 Selection for the K4π final state

Permutations of two negatively- and two positively-charged
tracks were first combined to form a D0 candidate. As for
the K2π channel, the tracks were alternatively assigned
the masses of a charged kaon and a charged pion. An ad-
ditional track, with charge opposite to that of the kaon
track and assigned the pion mass (πs), was combined with
the D0 candidate to form a D∗± candidate. The combina-
torial background for the K4π decay channel was reduced
by requiring

– that the transverse momentum of the K and each π
was greater than 0.5 and 0.2 GeV, respectively, and
that of the πs was greater than 0.15 GeV.

In addition, the momentum ratio requirement

– p(D0)/p(πs) > 9.5

was imposed.
The D∗± kinematic region was defined as

– 2.5 < pT (D∗) < 15 GeV and |η(D∗)| < 1.5.

The signal regions for M(D0) and ∆M ≡ (MKππππs
−

MKπππ) were

– 1.81 < M(D0) < 1.91 GeV, and
– 143 < ∆M < 148 MeV.

Fig. 2a–d. ZEUS data in the kinematic region 1 < Q2 < 600
GeV2and 0.02 < y < 0.7: a M(D0) = M(Kπ) and b ∆M
= M(Kππs) − M(Kπ) for the K2π final state. The data are
shown in the same kinematic region for the K4π final state in c
M(D0) = M(K3π) and d ∆M = M(K3ππs) − M(K3π). The
events in a and c are those for which 143 < ∆M< 148 MeV.
Similarly, b and d are shown for events in the M(D0) signal
region: 1.80-1.92 (1.81-1.91) GeVfor the K2π (K4π) channel.
The solid curves are the results of the fits described in the text.
The dashed histograms in c and d represent the background
distributions obtained by restricting the sample to side-bands
from the ∆M and M(D0) distributions, respectively

6.5 Mass distributions

Figures 2a and c show the distributions of M(D0) for can-
didates with ∆M in the signal region for the two final
states, while Figs. 2b and d show the distributions of ∆M
for candidates with M(D0) in the signal region. Clear sig-
nals are observed around the expected mass values.

For theK2π final state, a fit to theM(D0) distribution
of two Gaussians plus an exponentially falling background
gives a peak at M(D0) = 1863.2 ± 0.8 MeV and a width
of 23 ± 2 MeV. The second Gaussian around 1.6 GeV in
Fig. 2a originates primarily from D0 decays to K−π+π0 in
which the neutral pion is not reconstructed. For the K4π
channel, the background level was determined by using the
side-bands outside the ∆M signal region (see the dashed
histogram in Fig. 2c) to make a M(D0) distribution. The
fit to the M(D0) distribution, made by adding a Gaussian
to the background distribution, yieldedM(D0) = 1862.7±
1.5 MeV and a width of 20 ± 2 MeV. The deviations of the
data from the fit, visible in the region just above the signal
in Fig. 2c, are mostly due to the mass misassignments of
the K and π candidates with the same charge from D0

decay. This was verified by MC studies [38]. The mass
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Fig. 3a–d. A comparison of reconstructed DIS quantities at
the detector level for the K2π data (points) and for the RAP-
GAP Monte Carlo simulation (shaded histogram): a the scat-
tered positron energy, E′

e, b the scattered positron angle, θ′
e,

c the hadronic angle, γh and d δ≡ Σi(Ei − pz,i)

values found for the D0 are consistent with the PDG [37]
value of 1864.6±0.5 MeV.

The solid curve in Fig. 2b shows a binned maximum-
likelihood fit to the ∆M distribution from the K2π chan-
nel using a Gaussian plus a background of the form A(∆M
−mπ)B exp[C(∆M−mπ)], where A, B and C are free pa-
rameters and mπ is the pion mass. The fit to the K2π plot
gives a peak at ∆M = 145.44 ± 0.05 MeV, in good agree-
ment with the PDG value of 145.397 ± 0.030 MeV, and a
width of 0.79 ± 0.05 MeV, in agreement with the experi-
mental resolution. The multiplicative exponential term is
needed to describe the background suppression at large
∆M , which comes from the requirement on the momen-
tum ratio p(D0)/p(πs).

The solid curve in Fig. 2d shows a fit of the ∆M dis-
tribution from the K4π channel using a Gaussian plus
a background distribution obtained from the side-bands
outside theM(D0) signal region (see the dashed histogram
in Fig. 2d). The fit yields a peak at ∆M = 145.61±
0.05 MeV and a width of 0.78 ± 0.07 MeV.

For the K2π channel, the number of D∗± events ob-
tained from a fit to the ∆M distribution in the restricted
region of Q2, y, pT (D∗) and η(D∗) is 2064±72. The num-
ber of events in the K4π channel is determined from the
∆M distribution using the side band method [14], which
properly accounts for the combinatorial background and
the background arising from the mass misassignments.
The side bands, 1.74 < M(Kπππ) < 1.79 GeV and 1.93 <

M(Kπππ) < 1.98 GeV, were normalized to the ∆M dis-
tribution in the region 150 < ∆M < 160 MeV. The
number of D∗± events in the K4π channel is found to
be 1277 ± 124 in the restricted kinematic region of the
measurement.

7 Data characteristics

The properties of the selected events are compared with
those of the RAPGAP Monte Carlo simulation. All distri-
butions shown are background-subtracted since they rep-
resent the number of signal events obtained by fitting the
various mass distributions in a given bin. The data for the
K2π channel are shown in Figs. 3 and 4 as solid points
and the RAPGAP simulation as shaded histograms. All
MC plots are normalized to have the same area as the
data distributions.

Figure 3 shows histograms of E′
e, θ

′
e, γh and δ and

Fig. 4a–c displays the distributions of Q2
e, xeΣ and WeΣ .

In general, reasonable agreement is observed between data
and the MC simulation. Figure 4d-f shows the transverse
momentum, pT (D∗), the pseudorapidity, η(D∗), and the
energy fraction carried by the D∗± in the γ∗p center-of-
mass frame, x(D∗). Although the pT (D∗) spectrum of the
data is well described, the MC pseudorapidity spectrum
is shifted to lower η compared to the data and the x(D∗)
spectrum for the MC is shifted to slightly larger values.
These discrepancies are examined in more detail below.

The HERWIG [34] Monte Carlo was used for system-
atic studies. This MC describes the D∗± differential distri-
butions better than RAPGAP, but does not give as good
agreement with the DIS variables as RAPGAP since it
does not contain QED radiative effects.

Photoproduction, where the final positron is scattered
through very small angles and escapes undetected through
the RCAL beamhole, is a possible background source.
Hadronic activity in the RCAL can be wrongly identified
as the scattered positron, giving rise to fake DIS events.
The effect was investigated using a large sample of photo-
produced D∗± events generated with the HERWIG MC.
After the final selection cuts, the photoproduction con-
tamination is found to be less than 1%, much smaller
than the statistical error of the measurement, and so is
neglected.

The overall contribution to D∗± production from b
quark decays in the measured kinematic region is esti-
mated to be less than 2%, using HVQDIS with mb = 4.5
GeV and a hadronization fraction of b → D∗ of 0.173
[39]. A similar study using RAPGAP yields an estimate
of ∼1% at low Q2 and less than 3% at high Q2. Hence the
contribution from b quark decays has been neglected.

8 Systematic uncertainties

The experimental systematic uncertainties in the cross
section are grouped into several major categories:
– Systematic uncertainties related to the inclusive DIS

selection of the events: variations were made in the y
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Fig. 4a–f. A comparison of the reconstructed DIS kinematic distributions at the detector level
for the K2π data (points) and for the RAPGAP Monte Carlo simulation (shaded histogram):
a Q2

e, b Bjorken-x, xeΣ and c the total hadronic center-of-mass energy, WeΣ . The remaining
plots show a comparison of the reconstructed D∗±-related quantities at the detector level for
data and for the RAPGAP Monte Carlo simulation: d pT (D∗), e η(D∗) and f x(D∗)

cut, the RCAL box cut, and the vertex position cut. In
addition, for the K2π final state both Q2 and y were
determined using the DA method rather than using
the eΣ method. The combined variations resulted in
a change of ±1.5% to the nominal cross section. For
the K4π channel, the electron method was used rather
than the DA method and the combined variations re-
sulted in a change of ±4.7%.

– Systematic uncertainties in the D∗± selection: for the
K2π final state, the minimum transverse momentum of
tracks used in the D∗± reconstruction was raised and
lowered by up to 100 MeV for the K and π and by
25 MeV for the πs and resulted in a ±4.5% variation.
The momentum ratio p(D0)/p(πs) was raised by +0.5
and yielded a negligible change. For the K4π channel,
similar changes in the minimum transverse momenta
and varying p(D0)/p(πs) by ±0.5 combine to give a
±8.5% variation.

– Systematic uncertainties related to the estimation of
the number of events and background uncertainty: for
the K2π analysis, a χ2 ∆M -fit instead of a (binned)
logarithmic-likelihood fit was performed. The M(D0)
signal range, within which the ∆M distributions were
fitted, was varied by ±10 MeV. These variations re-
sulted in a change of ±2.5%. For the K4π analysis,
the M(D0) signal range was also varied by ±10 MeV
and the width of the side-bands used to estimate com-
binatorial background was varied. These variations re-
sulted in a change of ±5.8%.

– The systematic uncertainty related to the MC gen-
erator was estimated for the K2π analysis by using
the HERWIG MC generator to calculate the correc-
tions for the cross section determination. This varia-
tion yields a change of -1.3%. The larger overall sys-
tematic uncertainty for the K4π channel means that
this systematic uncertainty was negligible for this chan-
nel.

– Since approximately 10% of the D∗± events [40] are
produced through a diffractive mechanism which was
not included in the Monte Carlo generators used to
correct the data, acceptance corrections have also been
obtained using a sample of diffractive events generated
with RAPGAP. The difference in the global correction
factor for the diffractive events was less than 10%. This
yielded a 1.3% variation in the overall cross section and
was neglected.

– The systematic uncertainty related to the trigger for
the K2π final state was estimated to be ±1% by an
analysis using only the inclusive DIS triggers and was
neglected.

– The overall normalization uncertainties due to the lu-
minosity measurement error of ±1.65%, and those due
to the D∗± and D0 decay branching ratios [37] were
not included in the systematic uncertainties.

The systematic uncertainties were added in quadra-
ture. The total systematic uncertainty is less than the
statistical error for most of the differential distributions
and is of the same order as the statistical error for the
integrated cross section.
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9 Cross sections

The cross sections for a given observable Y were deter-
mined from the equation:

dσ

dY
=

N

A · L ·B ·∆Y (3)

where N is the number of D∗± events in a bin of ∆Y , A is
the acceptance (including migrations, efficiencies and ra-
diative effects) for that bin, L is the integrated luminosity
and B is the product of the appropriate branching ratios
for the D∗± and D0.

The RAPGAP MC was used to estimate the accep-
tance. In the K2π (K4π) kinematic region the overall ac-
ceptance was 25.4 (18.0)%. The statistical error of the MC
is negligible compared to that of the data.

The measured cross section in the region 1 < Q2 < 600
GeV2, 0.02 < y < 0.7, for 1.5 < pT (D∗) < 15 GeV and
|η(D∗)| < 1.5 using the K2π final state, is

σ(e+p → e+D∗±X) = 8.31 ± 0.31(stat.)+0.30
−0.50(syst.) nb,

and for 2.5 < pT (D∗) < 15 GeV and |η(D∗)| < 1.5 the
cross section using the K4π channel is

σ(e+p → e+D∗±X) = 3.65 ± 0.36(stat.)+0.20
−0.41(syst.) nb.

These results are in good agreement with the HVQDIS [6]
calculations of 8.44 and 4.13 nb, respectively. The parton
distribution functions resulting from a ZEUS NLO QCD
fit [41] to the ZEUS, NMC and BCDMS data were used
in these calculations. In this fit, only the gluon and three
light quark flavors were assumed to be present. HVQDIS
fragments the charm quark to a D∗± using the Peter-
son fragmentation function. For the above calculation, mc

was set to 1.4 GeV, the Peterson fragmentation parameter
ε=0.035, and the mass factorization and renormalization
scales were both set to

√
4m2

c +Q2. The hadronization
fraction f(c → D∗+) was set to 0.222 ± 0.014 ± 0.014, as
measured by the OPAL collaboration [39]. The result is,
however, sensitive to the choice of the parameters. For ex-
ample, varying mc from 1.3 to 1.5 GeV results in a vari-
ation of ±0.55 nb to the K2π prediction of 8.44 nb. If,
instead of using the ZEUS NLO parton distributions, the
three-flavor GRV98HO [42] set is used, the calculated cross
section for the K2π kinematic region, assuming a charm
mass of 1.4 GeV, is reduced from 8.44 nb to 7.00 nb.

Figures 5 and 6 show the D∗± differential cross sec-
tions in the measured kinematic regions. The data points
are drawn at the bin center of gravity, which is defined
as the point at which the value of the assumed theoreti-
cal curve (HVQDIS with central choice of parameters and
RAPGAP fragmentation, see the discussion below) equals
the mean value of the curve in the bin. The cross sections
are compiled in Table 1. The 9% error on f(c → D∗+)
introduces an extra normalization uncertainty on the the-
oretical predictions which is not shown.

The data are compared with two different theoreti-
cal calculations. There is good agreement with HVQDIS,
shown as the open bands in Fig. 5, except for the η(D∗)
and x(D∗) distributions, where the HVQDIS calculations

Fig. 5a–f. Differential cross sections for D∗± production from
the K2π final state (solid dots) in the Q2, y, pT (D∗) and η(D∗)
kinematic region as functions of a log10 Q2, b log10 x, c W , d
pT (D∗), e η(D∗) and f x(D∗). The inner error bars show the
statistical uncertainties while the outer ones show the statisti-
cal and systematic uncertainties summed in quadrature. The
results from the K4π channel (open triangles) are also shown
in the pT (D∗)d and η(D∗) e plots. The data are compared
with the NLO QCD calculation as implemented in HVQDIS
using the ZEUS NLO pdf’s. The open band corresponds to the
standard Peterson fragmentation function with the parameter
ε = 0.035. For the shaded band, the Peterson fragmentation
was replaced by that extracted from RAPGAP (see the text
for details). The boundaries of the bands correspond to charm
mass variations between 1.3 (upper curve) and 1.5 GeV(lower
curve). In a and b, the open band is indistinguishable from the
shaded band

show a shift with respect to the data to more negative
η(D∗) values and larger x(D∗) values.

The disagreement between the η(D∗) distribution and
HVQDIS has also been observed by the H1 collaboration
in their DIS charm production data [4]. A large discrep-
ancy in the η(D∗) distribution is also observed [14] be-
tween the ZEUS photoproduction of charm and a massive
NLO calculation [43]. The discrepancy in shapes between
the data and the HVQDIS prediction could result from
the use of the Peterson fragmentation function. This pre-
dicts the magnitude of the momentum of the D∗+ from
c → D∗+ but produces no D∗+ transverse momentum rel-
ative to the c quark. In addition, no QCD evolution is
included. In contrast, the fragmentation models in JET-
SET and HERWIG predict a migration of the charm quark
emerging from the hard interaction towards positive pseu-
dorapidities as it fragments into a D∗+, due to the inter-
action between the color charges of the c quark and the
proton remnant. This has been called the ‘beam-drag ef-
fect’ [44].

To quantify the contribution of these fragmentation
effects to the predicted D∗± differential cross sections,
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Table 1. The D∗→ Kππs and D∗→ Kππππs differential cross sections. The bin range,
the center-of-gravity of the bin (see text) and the cross sections for all the data in Figs. 5
and 6 are shown. The first error is the statistical error and the asymmetric errors are the
statistical and systematic uncertainties added in quadrature. The overall normalization
uncertainties arising from the luminosity measurement (±1.65%) and from the D∗± and
D0 decay branching ratios are not included

Kππs Kππs

(range) log10(Q2) dσ/dlog10(Q2) (range) log10(x) dσ/dlog10(x)
(nb) (nb)

(0.0,0.7) 0.39 5.99±0.47 +0.61
−0.74 (-4.1,-3.4) -3.69 4.54 ± 0.35 +0.45

−0.56

(0.7,1.0) 0.85 5.17±0.39 +0.54
−0.46 (-3.4,-2.8) -3.08 4.24 ± 0.23 +0.34

−0.27

(1.0,1.3) 1.16 4.50±0.33 +0.43
−0.44 (-2.8,-2.3) -2.56 2.06 ± 0.16 +0.19

−0.17

(1.3,1.6) 1.45 2.72±0.25 +0.32
−0.29 (-2.3,-2.0) -2.16 0.78 ± 0.14 +0.15

−0.16

(1.6,1.9) 1.74 1.47±0.17 +0.18
−0.17 (-2.0,-1.5) -1.82 0.25 ± 0.10 +0.11

−0.09

(1.9,2.3) 2.08 0.47±0.08 +0.11
−0.10

(2.3,2.8) 2.48 0.135±0.073 +0.096
−0.069

Kππs Kππs

(range) W dσ/dW (range) x(D∗) dσ/dx(D∗)
(GeV) (nb/GeV) (nb)

(50,90) 73 0.0450±0.0035+0.0047
−0.0079 (0.0,0.2) 0.13 9.3 ± 1.2 +1.4

−2.2

(90,115) 102 0.0659±0.0048+0.0074
−0.0068 (0.2,0.3) 0.28 13.2 ± 1.2 +1.9

−1.4

(115,145) 129 0.0510±0.0039+0.0068
−0.0059 (0.3,0.5) 0.42 13.61 ± 0.98 +1.22

−1.90

(145,175) 159 0.0442±0.0038+0.0059
−0.0049 (0.5,0.6) 0.55 12.79 ± 1.03 +1.49

−0.99

(175,200) 187 0.0361±0.0043+0.0067
−0.0071 (0.6,0.8) 0.67 8.15 ± 0.60 +0.95

−1.24

(200,250) 222 0.0266±0.0032+0.0033
−0.0069 (0.8,1.0) 0.80 1.12 ± 0.10 +0.27

−0.27

Kππs Kππππs

(range) pT (D∗) dσ/dpT (D∗) (range) pT (D∗) dσ/dpT (D∗)
(GeV) (nb/GeV) (GeV) (nb/GeV)

(1.5,2.4) 1.91 3.82±0.39 +0.48
−0.65 (2.5,3.0) 2.74 2.42 ± 0.76 +0.90

−0.97

(2.4,3.1) 2.72 2.72±0.21 +0.26
−0.28 (3.0,3.5) 3.24 1.63 ± 0.49 +1.4

−0.71

(3.1,4.0) 3.50 1.57±0.10 +0.14
−0.13 (3.5,4.0) 3.73 1.03 ± 0.29 +0.52

−0.33

(4.0,6.0) 4.77 0.527±0.033 +0.041
−0.047 (4.0,6.0) 4.74 0.43 ± 0.06 +0.31

−0.07

(6.0,15.0) 7.93 0.0419±0.0034+0.0043
−0.0041 (6.0,8.0) 6.77 0.127 ± 0.019+0.074

−0.026

(8.0,10.0) 8.75 0.044 ± 0.010+0.022
−0.010

(10.0,15.0) 11.73 0.007 ± 0.002+0.011
−0.003

Kππs Kππππs

(range) η(D∗) dσ/dη(D∗) (range) η(D∗) dσ/dη(D∗)
(nb) (nb)

(-1.5,-0.8) -1.13 1.93±0.19 +0.27
−0.29 (-1.5,-1.0) -1.18 0.73 ± 0.21 +0.22

−0.31

(-0.8,-0.4) -0.58 2.41±0.21 +0.22
−0.25 (-1.0,-0.5) -0.73 1.03 ± 0.23 +0.16

−0.21

(-0.3,0.0) -0.18 3.04±0.28 +0.30
−0.37 (-0.5,0.0) -0.24 1.48 ± 0.26 +0.23

−0.27

(0.0,0.4) 0.20 3.09±0.25 +0.30
−0.31 (0.0,0.5) 0.26 1.48 ± 0.31 +0.42

−0.27

(0.4,0.8) 0.60 3.15±0.27 +0.38
−0.43 (0.5,1.0) 0.75 1.12 ± 0.35 +0.34

−0.44

(0.8,1.5) 1.15 3.26±0.31 +0.40
−0.44 (1.0,1.5) 1.22 2.08 ± 0.45 +0.81

−0.78
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Fig. 6a–f. Differential cross sections for D∗± production from
the K2π final state (solid dots) in the accessible Q2, y, pT (D∗)
and η(D∗) region as functions of a log10 Q2, b log10 x, c W , d
pT (D∗), e η(D∗) and f x(D∗). The inner error bars show the
statistical uncertainties while the outer ones show the statisti-
cal and systematic uncertainties summed in quadrature. The
solid curves show the results of the HVQDIS calculation with
RAPGAP-based fragmentation and mc = 1.4 GeV, while the
dashed curves correspond to the BKL results (see text)

the RAPGAP Monte Carlo charm quark distribution was
reweighted to match the two-dimensional pT (c), η(c) dis-
tributions for the charm quarks from HVQDIS. The frag-
mentation of these quarks was simulated by the Monte
Carlo program including parton shower effects2. This re-
weighting procedure leads to an improved description of
the data, as can be seen in Fig. 5 (shaded bands), where
the two different implementations of the c → D∗+ frag-
mentation are compared. In order to study systematic ef-
fects, the same procedure as above was followed but with
the parton shower option switched off and HERWIG used.
This produced qualitatively similar results to the nominal
method3. The data are again compared to the HVQDIS
calculation including the RAPGAP-based fragmentation
in Fig. 6. The solid curves are from using mc = 1.4 GeV,
corresponding to the central mass value of the shaded
band in Fig. 5.

The data are also compared in Fig. 6 with the BKL
tree-level calculations [13] (dashed curves) in which the
D∗± is created from both color singlet and color octet con-
tributions to the (cq̄)-state. The relative weight of these

2 Note that this procedure keeps the cross section in the over-
all phase space in pT (D∗) and η(D∗) equal to the HVQDIS re-
sult and is equivalent to applying the RAPGAP fragmentation
to the HVQDIS charm quark prediction.

3 Some double counting may occur between the NLO calcu-
lations and the parton shower, which contains resummed terms
of all orders. This effect is estimated to be small from the cal-
culations with the parton shower option in JETSET switched
off.

Table 2. The cross sections for D∗± production from the K2π
final state. The table contains for each bin: the Q2 range of the
bin; the y range of the bin; the measured D∗± cross section in
the bin with statistical and systematic uncertainties; and the
HVQDIS prediction for this cross section. The overall normal-
ization uncertainties arising from the luminosity measurement
(±1.65%) and from the D∗± and D0 decay branching ratios
are not included

Q2 range y σ(D∗) σ(D∗)
(GeV2) range meas. (nb) pred.(nb)
1–3.5 0.70–0.24 1.45 ± 0.23+0.20

−0.22 1.12
0.24–0.11 1.00 ± 0.20+0.17

−0.17 1.00
0.11–0.02 0.92 ± 0.16+0.15

−0.91 1.10
3.5–6.5 0.70–0.22 0.73 ± 0.10+0.07

−0.11 0.54
0.22–0.11 0.342 ± 0.055+0.068

−0.036 0.405
0.11–0.02 0.433 ± 0.066+0.069

−0.076 0.528
6.5–9 0.70–0.15 0.388 ± 0.060+0.051

−0.053 0.369
0.15–0.02 0.288 ± 0.046+0.068

−0.008 0.355
9–14 0.70–0.23 0.370 ± 0.057+0.038

−0.030 0.302
0.23–0.11 0.314 ± 0.045+0.051

−0.076 0.251
0.11–0.02 0.253 ± 0.042+0.011

−0.020 0.316
14–22 0.70–0.23 0.25 ± 0.05+0.11

−0.02 0.26
0.23–0.11 0.254 ± 0.043+0.044

−0.073 0.212
0.11–0.02 0.226 ± 0.035+0.052

−0.027 0.250
22–44 0.70–0.23 0.387 ± 0.053+0.052

−0.040 0.301
0.23–0.11 0.200 ± 0.027+0.028

−0.021 0.226
0.70–0.23 0.198 ± 0.033+0.031

−0.018 0.240
44–90 0.23–0.02 0.202 ± 0.043+0.050

−0.019 0.188
0.23–0.70 0.200 ± 0.032+0.011

−0.016 0.221
90–200 0.70–0.23 0.090 ± 0.023+0.086

−0.013 0.099
0.23–0.02 0.075 ± 0.015+0.010

−0.007 0.086

color configurations has been taken from comparisons of
the BKL calculation to the published ZEUS D∗ cross sec-
tions in photoproduction [14]. The calculation shows rea-
sonable agreement with these DIS data.

Tables 2 and 3 give the resulting integrated cross sec-
tions binned inQ2 and y for theK2π andK4π final states,
respectively. The bin widths were chosen such that they
contained of the order of 100 signal events. The resulting
purity in each bin is better than 70%. The resolutions in
both Q2 and y are better than 10% in all bins. These bins
were chosen to measure F cc̄

2 as described in the next sec-
tion. Tables 2 and 3 also show the HVQDIS predictions for
the different kinematic bins. The predictions are in good
agreement with the data.

The quantitative agreement obtained between data and
the HVQDIS calculation displayed in Fig. 5 and Tables 2
and 3 represents a confirmation of the hard scattering fac-
torization theorem, in that the same gluon and three light-
quark-flavor parton distributions describe both the ZEUS
F2 data and the D∗± differential cross sections reported
here. In view of the agreement observed here, the HVQDIS
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Table 3. The cross sections for D∗± production from the K4π
final state. The table contains for each bin: the Q2 range of the
bin; the y range of the bin; the measured D∗± cross section in
the bin with statistical and systematic uncertainties; and the
HVQDIS prediction for this cross section. The overall normal-
ization uncertainties arising from the luminosity measurement
(±1.65%) and from the D∗± and D0 decay branching ratios
are not included

Q2 range y σ(D∗) σ(D∗)
(GeV2) range meas. (nb) pred. (nb)
1–10 0.70–0.34 0.94±0.29+0.39

−0.21 0.61
0.34–0.02 1.39±0.51+0.21

−0.92 1.55
10–21 0.70–0.28 0.35±0.08+0.11

−0.06 0.21
0.28–0.02 0.59±0.11+0.07

−0.11 0.47
21–33 0.70–0.22 0.115±0.055+0.039

−0.023 0.154
0.22–0.02 0.125±0.045+0.048

−0.050 0.209
50–600 0.70–0.22 0.23±0.07+0.07

−0.13 0.249
0.22–0.02 0.240±0.061+0.059

−0.084 0.221

program can be used to extrapolate outside the accessible
kinematic region to obtain the total D∗± cross section.

10 Extraction of F cc̄
2

The charm contribution, F cc̄
2 , to the proton structure func-

tion F2 can be related to the double differential cc̄ cross
section in x and Q2 by

d2σcc̄(x,Q2)
dxdQ2

=
2πα2

xQ4 {[1 + (1 − y)2]F cc̄
2 (x,Q2) − y2F cc̄

L (x,Q2)}. (4)

In this paper, the cc̄ cross section is obtained by measuring
the D∗± production cross section and employing the ha-
dronization fraction f(c → D∗+) to derive the total charm
cross section. Since only a limited kinematic region is ac-
cessible for the measurement of D∗±, a prescription for
extrapolating to the full kinematic phase space is needed.
The contribution of F cc̄

L (x,Q2) to the cross section in the
measured Q2, y region is estimated from the NLO theo-
retical prediction [45] to be less than 1% and is therefore
neglected. Equation (4) defines F cc̄

2 as arising from events
with one or more charm particles in the final state, but
it is not a unique theoretical definition. It depends on the
scheme and parton distributions [46].

In order to measure the contribution of charm to the
inclusive F2, the integrated cross sections in the Q2 and y
kinematic bins of Tables 2 and 3 were extrapolated to the
full pT (D∗) and η(D∗) phase space using HVQDIS with
the RAPGAP-based fragmentation corrections discussed
in the previous section. Typical extrapolation factors for
the K2π (K4π) final state were between 4 (10), at low Q2,
and 1.5 (4), at high Q2. This procedure neglects the pos-
sibility of additional contributions outside the measured
region due, for example, to intrinsic charm [47].

The extrapolated cross sections are converted into cc̄
cross sections using the hadronization fraction of charm to
D∗+: f(c → D∗+) = 0.222±0.014±0.014 [39]. The use of
this value from OPAL implicitly assumes that charm pro-
duction in DIS and e+e− annihilation produces the same
fractions of the various charm final-states. The produc-
tion of charm bound states, such as e+p → e+J/ψX, is
not accounted for when using the LEP c → D∗+ branch-
ing fraction. However, the inelastic J/ψ cross section has
been calculated [48] to be only 2.5-4.5% of the total charm
production cross section predicted by HVQDIS in the Q2,
y range of this analysis. The elastic J/ψ cross section has
been measured in DIS [49] and is less than 0.5% of the
predicted total charm cross section in the range of that
measurement. The 9% uncertainty on the c → D∗+ hadro-
nization is larger than that arising from these J/ψ contri-
butions, which have consequently been neglected.

The systematic uncertainty on the extrapolation of
the measured D∗± cross sections to the full pT (D∗) and
η(D∗) phase space was investigated: varying the param-
eter mc by ±0.15 GeV gave a variation which was typ-
ically <5%; using the standard Peterson fragmentation
parameter ε = 0.035 (instead of the RAPGAP fragmenta-
tion correction) yielded changes typically <15%; and us-
ing the GRV98HO pdf’s in the NLO calculation generally
caused changes of <20%. If these uncertainties are added
in quadrature, they are typically smaller than the statis-
tical errors. However, the fact that the data are measured
in a small part of the available phase space means that a
realistic uncertainty on the extrapolation cannot be eval-
uated. Therefore these extrapolation uncertainties are not
included in the systematic uncertainties discussed below.

Since the structure function varies only slowly, it is
assumed to be constant within a given Q2 and y bin, so
that the measured F cc̄

2 in a bin i is given by

F cc̄
2 meas(xi, Q

2
i ) =

σi,meas(e+p → D∗X)
σi,theor(e+p → D∗X)

F cc̄
2 theor(xi, Q

2
i )

(5)
where the cross sections σi in bin i are those for the
measured pT (D∗) and η(D∗) region, and the subscripts
meas and theor denote ‘measured’ and ‘theoretical’, re-
spectively. The value of F cc̄

2 theor was calculated from the
NLO coefficient functions [8], as implemented in a conve-
nient parametrization [45]. The functional form of F cc̄

2 theor
was used to quote the results for F cc̄

2 at convenient values
of xi and Q2

i close to the center-of-gravity of the bin. In
this calculation, the same parton densities, charm mass
(mc= 1.4 GeV), and factorization and renormalization
scales (

√
4m2

c +Q2) have been used as for the HVQDIS
calculation of the differential cross sections.

10.1 Combination of F cc̄
2 from both decays

Finally, the results from the two decay channels were com-
bined in the eight common bins, taking into account all
systematic uncertainties. The combined value is a weighted
average with weights according to the statistical precision
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F
2  
cc _

x

x
Fig. 7. The measured F cc̄

2 at Q2 values between 1.8 and 130
GeV2as a function of x. The inner error bars show the statis-
tical uncertainty and the outer ones show the statistical and
experimental systematic uncertainties summed in quadrature.
The curves correspond to the NLO QCD calculation [7,45] us-
ing the result of the ZEUS NLO QCD fit to F2 [41]. The solid
curves correspond to the central values and the dashed curves
give the uncertainty due to the parton distributions from the
ZEUS NLO fit. The overall normalization uncertainties arising
from the luminosity measurement (±1.65%), the D∗± and D0

decay branching ratios, the charm hadronization fraction to
D∗+ (±9%) and the extrapolation uncertainties (see text) are
not included

of the individual measurements. The systematic uncer-
tainties were assumed to be either uncorrelated or 100%
correlated between the analyses, as appropriate. All uncer-
tainties concerning the DIS event selection were assumed
to be correlated. Only the effect of the variation of the
D0 mass window and the changes in the pT requirements
for the D0 decay products were taken as uncorrelated.
As in both analyses, the positive and negative errors were
treated separately. The procedure leads to a gain in statis-
tical precision of 5-25%, compared to using only the K2π
decay channel.

Table 4. The F cc̄
2 results derived from the combination of the

K2π and K4π channels (see text). The table contains for each
bin: the Q2 value at which F cc̄

2 is reported; the x value at which
F cc̄

2 is reported; and the measured F cc̄
2 with statistical and sys-

tematic uncertainties. The overall normalization uncertainties
arising from the luminosity measurement (±1.65%), the D∗±

and D0 decay branching ratios, the charm hadronization frac-
tion to D∗+ (±9%) and the extrapolation uncertainties (see
text) are not included

Q2 x F cc̄
2 (x, Q2)

(GeV2) meas. ± stat. ± syst.
1.8 5.0 · 10−5 0.107 ± 0.017+0.015

−0.016

1.3 · 10−4 0.054 ± 0.011+0.009
−0.009

5.0 · 10−4 0.034 ± 0.006+0.005
−0.003

4 1.3 · 10−4 0.195 ± 0.024+0.018
−0.028

3.0 · 10−4 0.088 ± 0.013+0.015
−0.008

1.2 · 10−3 0.058 ± 0.009+0.009
−0.010

7 3.0 · 10−4 0.176 ± 0.027+0.023
−0.024

1.2 · 10−3 0.095 ± 0.015+0.023
−0.002

11 3.0 · 10−4 0.314 ± 0.048+0.032
−0.025

8.0 · 10−4 0.211 ± 0.030+0.035
−0.051

2.0 · 10−3 0.123 ± 0.020+0.006
−0.010

18 5.0 · 10−4 0.32 ± 0.05+0.11
−0.03

1.2 · 10−3 0.248 ± 0.031+0.028
−0.044

4.0 · 10−3 0.136 ± 0.021+0.031
−0.017

30 8.0 · 10−4 0.395 ± 0.052+0.050
−0.037

2.0 · 10−3 0.181 ± 0.024+0.025
−0.021

8.0 · 10−3 0.121 ± 0.021+0.019
−0.011

60 2.0 · 10−3 0.361 ± 0.077+0.090
−0.033

8.0 · 10−3 0.168 ± 0.027+0.009
−0.013

130 4.0 · 10−3 0.272 ± 0.053+0.039
−0.067

2.0 · 10−2 0.109 ± 0.017+0.014
−0.017

10.2 Results and discussion

Table 4 and Fig. 7 display the F cc̄
2 values in the various Q2

bins as a function of x. The structure function F cc̄
2 shows

a rise with decreasing x at constant values of Q2. The rise
becomes steeper at higher Q2.

The curves in Fig. 7 represent the results of the NLO
QCD calculation [45] with the ZEUS NLO QCD pdf’s.
The central, solid curve corresponds to a charm quark
mass of 1.4 GeV. Since good agreement was obtained be-
tween data and the HVQDIS calculation for the D∗± dif-
ferential cross sections and for the integrated cross sections
shown in Tables 2 and 3 and since that calculation was
used to extrapolate to the full kinematic range, the curves
would be expected to describe the resulting values of F cc̄

2 .
The total uncertainty in the calculation of F cc̄

2 , shown as
the band of dashed curves around the solid curve, cor-
responds to the uncertainty propagated from the ZEUS
NLO QCD fit and is dominated by the uncertainty in the
charm quark mass, which was varied from 1.2 to 1.6 GeV.
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Q2 (GeV2)

F
2  
cc _

Fig. 8. The measured F cc̄
2 at x values between 0.00005 and 0.02

as a function of Q2. The various values of x are indicated to the
right of the data points. For clarity of presentation, the F cc̄

2 val-
ues have been scaled by the number shown in parentheses next
to the x value. The inner error bars show the statistical uncer-
tainty and the outer ones show the statistical and systematic
uncertainties summed in quadrature. The curves correspond to
the NLO QCD calculation [7,45] using the result of the ZEUS
NLO QCD fit to F2 [41]. The solid curves correspond to the
central values and the dashed curves give the uncertainty due
to the parton distributions from the ZEUS NLO fit. Details
of this calculation are given in the text. The overall normal-
ization uncertainties arising from the luminosity measurement
(±1.65%), the D∗± and D0 decay branching ratios, the charm
hadronization fraction to D∗+ (±9%) and the extrapolation
uncertainties (see text) are not included

Figure 8 shows F cc̄
2 at constant x values as a function of

Q2. Although the number of points is small, large scaling
violations of the structure function are evident. The curves
superimposed on the data are from the same calculation
as shown in Fig. 7.

Figure 9 shows the ratio of F cc̄
2 to F2, the inclusive

proton structure function, as a function of x in fixed-Q2

bins. The curves superimposed on the data are again from
the calculation used for Fig. 7. The values of F2 used to

F
2  
cc _  /

F
2

x

x
Fig. 9. The ratio of F cc̄

2 to F2 at Q2 values between 1.8 and
130 GeV2as a function of x. The ratio is calculated using the
F cc̄

2 values measured in this analysis and the ZEUS NLO QCD
fit to F2 [36]. The inner error bars show the statistical uncer-
tainty and the outer ones show the statistical and systematic
uncertainties summed in quadrature. The curves correspond to
the NLO QCD calculation [7,45] using the result of the ZEUS
NLO QCD fit to F2 [41]. The solid curves correspond to the
central values and the dashed curves give the uncertainty due
to the parton distributions from the ZEUS NLO fit. Details
of this calculation are given in the text. The overall normal-
ization uncertainties arising from the luminosity measurement
(±1.65%), the D∗± and D0 decay branching ratios, the charm
hadronization fraction to D∗+ (±9%) and the extrapolation
uncertainties (see text) are not included

determine the ratio were taken from the ZEUS NLO QCD
fit at the same Q2 and x for which F cc̄

2 is quoted. The
error on F2 is negligible in comparison to F cc̄

2 . The charm
contribution to F2 rises steeply with decreasing x. In the
measured x region, F cc̄

2 accounts for< 10% of F2 at lowQ2

and x ' 5·10−4 and rises to ' 30% of F2 for Q2> 11 GeV2

at the lowest x measured. The strong rise of F cc̄
2 at low

values of x is similar to that of the gluon density and
thus supports the hypothesis that charm production is
dominated by the boson-gluon-fusion mechanism.
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11 Summary

This paper presents an analysis of D∗± production in DIS
using the combined ZEUS 1996 and 1997 data samples
with an integrated luminosity of 37 pb−1, about ten times
larger than in the previous ZEUS study. In addition, both
the K2π and K4π decay modes of the D∗ have been em-
ployed and their results combined. In the experimentally
accessible region of 1.5(2.5) < pT (D∗) < 15 GeV and
|η(D∗)| < 1.5, the cross section forD∗± production for the
K2π (K4π) final state in events with 1 < Q2 < 600 GeV2

and 0.02 < y < 0.7 is 8.31 ± 0.31(stat.)+0.30
−0.50(sys.) nb

(3.65 ± 0.36(stat.)+0.20
−0.41(sys.) nb).

QCD calculations of charm production based on the
NLO boson-gluon-fusion process with three flavors of light
quarks show excellent agreement with the overall cross sec-
tion and with the Q2 and y distributions. The η(D∗) and
x(D∗) distributions, however, cannot be reproduced with
the standard Peterson fragmentation. Good agreement is
obtained after a more appropriate c → D∗+ fragmenta-
tion, such as that in JETSET, is used.

The quantitative agreement between the NLO pQCD
calculations and the ZEUS data provides a confirmation
of the hard scattering factorization theorem, whereby the
same gluon density in the proton describes both the in-
clusive F2 and the DIS production of charm.

The charm contribution, F cc̄
2 , to the proton structure

function F2 was obtained using the NLO QCD calculation
to extrapolate outside the measured pT (D∗) and η(D∗)
region. Compared to the previous ZEUS study, the kine-
matic range has been extended down to Q2 = 1.8 GeV2

and up to Q2 = 130 GeV2, with reduced uncertainties.
The structure function F cc̄

2 exhibits large scaling viola-
tions, as well as a steep rise with decreasing x at constant
Q2. For Q2 > 11 GeV2 and x ' 10−3, the ratio of F cc̄

2 to
F2 is about 0.3.
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